Covers for monoids

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covers for Monoids*

A monoid M is an extension of a submonoid T by a group G if there is a morphism from M onto G such that T is the inverse image of the identity of G. Our first main theorem gives descriptions of such extensions in terms of groups acting on categories. The theory developed is also used to obtain a second main theorem which answers the following question. Given a monoid M and a submonoid T , under...

متن کامل

Right Cancellative and Left Ample Monoids: Quasivarieties and Proper Covers

The aim of this paper is to study certain quasivarieties of left ample monoids. Left ample monoids are monoids of partial one–one mappings of sets closed under the operation α 7→ αα−1. The idempotents of a left ample monoid form a semilattice and have a strong influence on the structure of the monoid; however, a left ample monoid need not be inverse. Every left ample monoid has a maximum right ...

متن کامل

A short note on strongly flat covers of acts over monoids

Recently two different concepts of covers of acts over monoids have been studied by a number of authors and many interesting results discovered. One of these concepts is based on coessential epimorphisms and the other is based on Enochs’ definition of a flat cover of a module over a ring. Two recent papers have suggested that in the former case, strongly flat covers are not unique. We show that...

متن کامل

Garside monoids vs divisibility monoids

Divisibility monoids (resp. Garside monoids) are a natural algebraic generalization of Mazurkiewicz trace monoids (resp. spherical Artin monoids), namely monoids in which the distributivity of the underlying lattices (resp. the existence of common multiples) is kept as an hypothesis, but the relations between the generators are not supposed to necessarily be commutations (resp. be of Coxeter ty...

متن کامل

Duality for Convex Monoids

Every C*-algebra gives rise to an effect module and a convex space of states, which are connected via Kadison duality. We explore this duality in several examples, where the C*-algebra is equipped with the structure of a finite-dimensional Hopf algebra. When the Hopf algebra is the function algebra or group algebra of a finite group, the resulting state spaces form convex monoids. We will prove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2004

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2003.09.004